Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination

نویسندگان

  • A. N. Fouda
  • A. B. El Basaty
  • E. A. Eid
چکیده

Convective assembly technique which is a simple and scalable method was used for coating uniform graphene oxide (GO) nanosheets on zinc oxide (ZnO) thin films. Upon UV irradiation, an enhancement in the on-off ratio was observed after functionalizing ZnO films by GO nanosheets. The calculations of on-off ratio, the device responsivity, and the external quantum efficiency were investigated and implied that the GO layer provides a stable pathway for electron transport. Structural investigations of the assembled GO and the heterostructure of GO on ZnO were performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The covered GO layer has a wide continuous area, with wrinkles and folds at the edges. In addition, the phonon lattice vibrations were investigated by Raman analysis. For GO and the heterostructure, a little change in the ratio between the D-band and G-band was found which means that no additional defects were formed within the heterostructure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotitania composite assembled with Graphene oxide for Photocatalytic degradation of Eosin Yellow under Visible light

Visible light responsive Graphene oxide (GO) nanotitania composite was synthesized and its photocatalytic activity was investigated for the degradation of Eosin Yellow (EY). The nanocomposite was synthesized by organic solvent free-controlled hydrolysis of titanium tetrachloride (TiCl4) exfoliated with 10 wt. % (0.5 g) of the as prepared GO particles under ultrasonication through in-situ additi...

متن کامل

A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure.

The weak photon absorption and fast carrier kinetics of graphene limit its application in photodetection. This limitation can be overcome by introducing photosensitive nanostructures to graphene. Herein we report the synthesis of a ZnO nanorod/graphene heterostructure by a facile in situ solution growth method. By combining the attributes of photosensitive ZnO nanorods and highly conductive gra...

متن کامل

Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.

A novel ZnO/reduced graphene oxide (RGO)/CdS heterostructure was successfully synthesized via a facile three-step solution method. RGO serves as an interlayer between ZnO nanowires and CdS quantum dots (QDs), which provides a high speed charge transfer channel, leading to an enhanced charge separation efficiency. Under UV light irradiation, the photocatalytic activity of the ZnO/RGO/CdS heteros...

متن کامل

Dye removal from water by zinc ferrite-graphene oxide nanocomposite

In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...

متن کامل

UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors

The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016